CXP 120G 300M MMF SR10

SLCX-120G-SR10

Overview

Sourcelight 120G CXP transceiver modules is a high performance, low power consumption, long reach interconnect solution supporting 120G Ethernet, Infiniband QDR DDR SDR 1G/2G/4G/8G/10G fiber channel and PCIE. It is compliant with the 120Gbits Small Form factor Hot-Pluggable CXP-interface.

Sourcelight 120G CXP transceiver modules is an assembly of 12 full-duplex lanes, where each lane is capable of transmitting data at rates up to 10.5Gb/s, providing an aggregated rate of 120Gb/s.

Features

- ♦ 12-channel full-duplex transceiver module
- ♦ Hot Pluggable CXP footprint
- Maximum link length of 300m on OM3 or 400m on OM4 Multimode Fiber (MMF)
- ♦ Multirate capability: 1.06Gb/s to 10.5Gb/s per CH
- ♦ Unretimed CPPI electrical interface
- ♦ Requires 3.3V power supply only
- ♦ Low power dissipation: <4.5W
- ♦ Reliable VCSEL array technology
- ♦ Built-in digital diagnostic functions
- ◆ Commercial operating case temperature : 0°C to 70°C
- ◆ Single MPO connector receptacle
- ◆ RoHS-6 Compliant (lead-free)

Applications

- ◆ 100GBASE-SR10 100G Ethernet
- ♦ Multiple 1G/2G/4G/8G/10G Fibre Channel
- ♦ Infiniband transmission at 12ch SDR, DDR and QDR
- ♦ Switches, Routers
- ◆ Data Centers
- ♦ Other 120G Interconnect Requirement

Ordering Information

Part Number	Product Description
SLCX-120G-SR10	CXP Optical Transceivers 12Channel X 10.5Gb/s MPO24 OM3 300m 0~70°C

Module Block Diagram

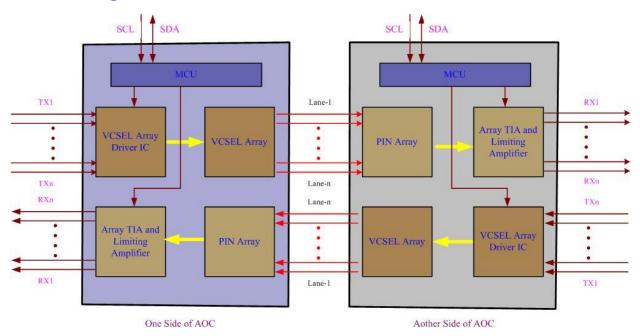


Figure 1. Module Block Diagram

General Product Characteristics

Parameter	Value	Unit	Note
Module Form Factor	CXP		
Number of Lanes	12 Tx and 12 Rx		
Maximum Aggregate Data Rate	126	Gb/s	
Maximum Data Rate per Lane	10.5	Gb/s	
Protocols Supported	Typical applications include 100G Ethernet, Infiniband, Fibre Channel, SATA/SAS3		
Electrical Interface and Pin-out	84-pin edge connector		Pin-out as defined by the CXP Specification
Optical Cable Type Required	Multimode ribbon 24-fiber cable assembly, MPO connector		
Maximum Power Consumption per End	4.5	Watts	Varies with output voltage swing and pre-emphasis settings
Management Interface	Serial, I2C-based, 450 kHz maximum frequency		As defined by the CXP Specification

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	ōС
Case Operating Temperature	Тор	0	70	ōС
Humidity(non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Operating Case temperature	Tca	0		70	ōC
Data Rate Per Lane	fd	1.06		10.5	Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			4.5	W

Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude aAmplitude	ΔVin	200		1200	mVp-p
Differential output voltage amplitude	ΔVout	600		800	mVp-p
Skew	Sw			300	ps
Bit Error Rate	BR			E-12	
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Note:

- 1. BER=10^-12; PRBS 2^31-1@10.3125Gbps.
- 2. Differential input voltage amplitude is measured between TxnP and TxnN
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

Electrical Characteristics

NOTE: The requires that a CPPI-compliant CXP electrical connector be used on the host board in order to guarantee its electrical interface specification. Please check with your connector supplier.

Parameter	Symbol	Min	Typical	Max	Unit	Ref.
Supply Voltage	Vcc1, VccTx, VccRx	3.15	3.3	3.45	V	
Supply Current	lcc	950		1050	mA	
Module Total Power	Р			3.5	W	1
		Link Turn-On	Time 🛚			
Transmit turn-on time				2000	ms	2
		Transmitter (p	er Lane)			
Single ended input voltage tolerance	VinT	-0.3		4.0	V	
Differential data input swing	Vin,pp	120		1200	mVpp	3
Differential input threshold			50		mV	
AC common mode input voltage tolerance (RMS)		15			mV	
Differential input return loss		Per IEEE 802.3ba, Section 86A.4.1.1			dB	4
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye mask coordinates {X1, X2 Y1, Y2}		0.11, 0.31 95, 350			UI mV	5
		Receiver (per	Lane)			
Single-ended output voltage		-0.3		4.0	V	
Differential data output swing	Vout,pp	0		800	mVpp	6,7
AC common mode output voltage (RMS)				7.5	mV	
Termination mismatch at 1 MHx				5	%	
Differential output return loss		Per IEEE 802.3ba, Section 86A.4.2.1			dB	4
Common mode output return loss		Per IEEE	802.3ba, Section	86A.4.2.2	dB	4
Output transition time, 20% to 80%		28			ps	
J2 Jitter output	Jo2	0.42			UI	
J9 Jitter output	Jo9	0.65			UI	
Eye mask coordinates {X1, X2 Y1, Y2}			0.29, 0.5 150, 42	5	UI mV	5
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. From power-on and end of any fault conditions.
- 3. After internal AC coupling. Self-biasing 100 Ohm differential input.
- 4. 10 MHz to 11.1 GHz range

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Ref.				
Transmitter (per Lane) 🛽										
Signaling Speed per Lane			10.5		GBd	1				
Center wavelength		840		860	nm					
RMS Spectral Width	SW			0.65	nm					
Average Launch Power per Lane	TXPx	-7.6		2.4	dBm					
Transmit OMA per Lane	TxOMA	-5.6		3.0	dBm	2				
Difference in Power between any two lanes [OMA]	DPx			4.0	dB					
Peak Power per Lane	PPx			4.0	dBm					
Launch Power [OMA] minus TDP per Lane	P-TDP	-6.5			dBm					
TDP per Lane	TDP			3.5	dBm					
Optical Extinction Ratio	ER	3.0			dB					
Optical Return Loss Tolerance	ORL			12	dB					
Encircled Flux	FLX	> 86% a	at 19 um < 30% a	t 4.5 um	dBm					
Average launch power of OFF transmitter, per lane				-30	dBm					
Relative Intensity Noise	RIN			-128	dB/Hz	3				
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		0.23, 0	.34, 0.43, 0.27, 0	0.35, 0.4						
		Receiver (per	Lane)							
Signaling Speed per Lane			10.5		GBd	4				
Center wavelength		840		860	nm					
Damage Threshold	DT	3.4			dBm					
Average Receive Power per Lane	RXPx	-9.5		2.4	dBm					
Receive Power (OMA) per Lane	RxOMA			3.0	dBm					
Stressed Receiver Sensitivity (OMA) per Lane	SRS			-5.4	dBm					
Peak Power, per lane	PPx			4	dBm					
Receiver Reflectance	RfI			-12	dB					
Vertical eye closure penalty, per lane				1.9	dB					
Stressed eye J2 jitter, per Lane				0.3	UI					
Stressed eye J9 jitter, per Lane				0.47	UI					
OMA of each aggressor lane				-0.4	dBm					
Receiver jitter tolerance [OMA], per Lane				-5.4	dBm					
Rx jitter tolerance: Jitter frequency		(75, 5)			kHz, UI					
and p-p amplitude		(375, 1)			kHz, UI					

LOS De-Assert	LOSD		-11	dBm	
LOS Assert	LOSA		-14	dBm	
LOS Hysteresis		1		dB	

Notes:

- 1. Transmitter consists of 12 lasers operating at a maximum rate of 10.5Gb/s each.
- 2. Even if TDP is <0.9dB, the OMA min must exceed this value.
- 3. RIN is scaled by 10*log(10/4) to maintain SNR outside of transmitter.
- 4. Receiver consists of 12 photo-detectors operating at a maximum rate of 10.5Gb/s each.
- 5. Hit ratio = 5 x 10E-5
- 6. AC coupled with 100 Ohm differential output impedance.
- 7. Settable in 4 discrete steps via the I2C interface. See Figure 2 for Vout settings.

Pin Descriptions

Pin	Logic	Symbol	Name/Description				
A1		GND	Module Ground	1			
A2	CML-I	Tx1+	Transmitter non-inverted data input				
А3	CML-I	Tx1-	Transmitter inverted data input				
A4		GND	Module Ground				
A5	CML-I	Tx3+	Transmitter non-inverted data input				
A6	CML-I	Tx3-	Transmitter inverted data input				
Α7		GND	Module Ground	1			
A8	CML-I	Tx5+	Transmitter non-inverted data input				
A9	CML-I	Tx5-	Transmitter inverted data input				
A10		GND	Module Ground	1			
A11	CML-I	Tx7+	Transmitter non-inverted data input				
A12	CML-I	Tx7-	Transmitter inverted data input				
A13		GND	Module Ground	1			
A14	CML-I	Tx9+	Transmitter non-inverted data input				
A15	CML-I	Tx9-	Transmitter inverted data input				
A16		GND	Module Ground	1			
A17	CML-I	Tx11+	Transmitter non-inverted data input				
A18	CML-I	Tx11-	Transmitter inverted data input				
A19		GND	Module Ground	1			
A20	LVCMOS-I	SCL	2-wire Serial interface clock	2			
A21	LVCMOS-I/O	SDA	2-wire Serial interface data	2			
B1		GND	Module Ground	1			
B2	CML-I	Tx0+	Transmitter non-inverted data input				
В3	CML-I	Tx0-	Transmitter inverted data input				
B4		GND	Module Ground	1			
B5	CML-I	Tx2+	Transmitter non-inverted data input				
В6	CML-I	Tx2-	Transmitter inverted data input				
В7		GND	Module Ground	1			

	Datasheet			
В8	CML-I	Tx4+	Transmitter non-inverted data input	
В9	CML-I	Tx4-	Transmitter inverted data input	
B10		GND	Module Ground	1
B11	CML-I	Tx6+	Transmitter non-inverted data input	
B12	CML-I	Tx6-	Transmitter inverted data input	
B13		GND	Module Ground	1
B14	CML-I	Tx8+	Transmitter non-inverted data input	
B15	CML-I	Tx8-	Transmitter inverted data input	
B16		GND	Module Ground	1
B17	CML-I	Tx10+	Transmitter non-inverted data input	1
B18	CML-I	Tx10-	Transmitter inverted data input	
B19		GND	Module Ground	1
B20		VCC3.3-TX	+3.3v Transmitter Power Supply	
B21		VCC12-TX	+12v Transmitter Power Supply, Unconnected	
C1		GND	Module Ground	1
C2	CML-O	RX1+	Receiver non-inverted data output	
C3	CML-O	RX1-	Receiver inverted data output	
C4		GND	Module Ground	1
C 5	CML-O	RX3+	Receiver non-inverted data output	
C 6	CML-O	RX3-	Receiver inverted data output	
C7		GND	Module Ground	1
C8	CML-O	RX5+	Receiver non-inverted data output	
C 9	CML-O	RX5-	Receiver inverted data output	
C10		GND	Module Ground	1
C11	CML-O	RX7+	Receiver non-inverted data output	
C12	CML-O	RX7-	Receiver inverted data output	
C13		GND	Module Ground	1
C14	CML-O	RX9+	Receiver non-inverted data output	
C15	CML-O	RX9-	Receiver inverted data output	
C16		GND	Module Ground	1
C17	CML-O	RX11+	Receiver non-inverted data output	
C18	CML-O	RX11-	Receiver inverted data output	
C19		GND	Module Ground	1
C20	LVTTL-O	PRSNT_L	Module Present, pulled down to GND	
C21	LVTTL-I/O	INT_L/Reset_L	Interrupt output, Module Reset	2
D1		GND	Module Ground	1
D2	CML-O	RXO+	Receiver non-inverted data output	
D3	CML-O	RXO-	Receiver inverted data output	
D4		GND	Module Ground	1
D5	CML-O	RX2+	Receiver non-inverted data output	

	Datasheet		
D6	CML-O	RX2-	Receiver inverted data output
D7		GND	Module Ground
D8	CML-O	RX4+	Receiver non-inverted data output
D9	CML-O	RX4-	Receiver inverted data output
D10		GND	Module Ground
D11	CML-O	RX6+	Receiver non-inverted data output
D12	CML-O	RX6-	Receiver inverted data output
D13		GND	Module Ground
D14	CML-O	RX8+	Receiver non-inverted data output
D15	CML-O	RX8-	Receiver inverted data output
D16		GND	Module Ground
D17	CML-O	RX10+	Receiver non-inverted data output
D18	CML-O	RX10-	Receiver inverted data output
D19		GND	Module Ground
D20		VCC3.3-RX	+3.3v Receiver Power Supply
D21		VCC12-RX	+12v Receiver Power Supply, Unconnected

Notes:

- ${\bf 1.}\ Module\ circuit\ ground\ is\ isolated\ from\ module\ chassis\ ground\ within\ the\ module.$
- 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.

Electrical Pin-out Details

	Receiver Top Card								
C1	GND		1				GND	D1	
C2	Rx1p			I –			Rx0p	D2	
C3	Rx1n			l			Rx0n	D3	
C4	GND						GND	D4	
C5	Rx3p			_			Rx2p	D5	
C6	Rx3n			l			Rx2n	D6	
C7	GND						GND	D7	
C8	Rx5p		ge	_			Rx4p	D8	
C9	Rx5n		Card Edge				Rx4n	D9	
C10	GND		r				GND	D10	
C11	Rx7p		Ca	_			Rx6p	D11	
C12	Rx7n			l			Rx6n	D12	
C13	GND						GND	D13	
C14	Rx9p						Rx8p	D14	
C15	Rx9n						Rx8n	D15	
C16	GND						GND	D16	
C17	Rx11p			_			Rx10p	D17	
C18	Rx11n						Rx10n	D18	
C19	GND						GND	D19	
C20	PRSNT_L			I [—]			Vcc3.3-Rx	D20	
C21	Int_L/Reset_L						Vcc12-Rx	D21	

Figure 2. Electrical Pin-out Details

Transmitter -- Bottom Card

A2 A3 A4 G	Tx1p Tx1n GND	
A4 G	ND	
A5	Tx3p	
A6	Tx3n	
A7 G	SND	
A8	Tx5p	
A9	Tx5n	
A10 G	SND	
A11	Tx7p	
A12	Tx7n	
A13 G	ND	
A14	Tx9p	
A15	Tx9n	
A16 G	SND	
A17	Tx11p	
A18	Tx11n	
A19 G	ND	
A20	SCL	
A21	SDA	

	GND	B1
•	Tx0p	B2
	Tx0n	B3
	GND	B4
	Tx2p	B5
	Tx2n	В6
	GND	В7
	Tx4p	B8
	Tx4n	В9
	GND	B10
	Тх6р	B11
	Tx6n	B12
	GND	B13
	Tx8p	B14
	Tx8n	B15
	GND	B16
	Tx10p	B17
	Tx10n	B18
	GND	B19
	Vcc3.3-Tx	B20
	Vcc12-Tx	B21

Figure 2. Electrical Pin-out Details

PRSNT_L Pin:

PRSNT_L is used to indicate when the module is plugged into the host receptacle. It is pulled down to GND through 5.2 kOhm in modules requiring 12V power, and tied directly down to GND in modules requiring 3.3V power only. Sourcelight CXP Prsnt_L Pin internal directly connected to GND and just need single +3.3V Power Supply. The PRSNT_L signal is asserted "Low" when inserted and deasserted "High" when the module is physically absent from the host connector.

Int_L/Reset_L Pin:

Int_L/Reset_L is a bidirectional signal. When driven from the host, it operates logically as a Reset signal. When driven from the module, it operates logically as an Interrupt signal. In both cases, the signal is asserted low, as indicated by the '_L' suffix. The Int_L/Reset_L signal requires open collector outputs in both the host and module, and must be pulled up on the host board. Int_L and Reset_L indications are distinguished from each other by timing - a shorter assertion, driven by the module, indicates an interrupt, and a longer assertion of the signal, driven by the host, indicates a reset.

Int_L operation: When Int_L/Reset_L is pulled "Low" by the module for longer than the minimum interrupt pulse width (tlnt_L,PW-min) and shorter than the maximum interrupt pulse width (tlnt_L,PW-max) the signal signifies an interrupt. An interrupt indicates a possible module operational fault or a module status critical to the host system. The host identifies the cause of the interrupt using the 2-wire serial interface. Int_L must operate in pulse mode (vs. static mode), in order to distinguish a short interrupt signal from a longer reset signal, so the module must de-assert Int_L/Reset_L after the interrupt has been signaled.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 3.

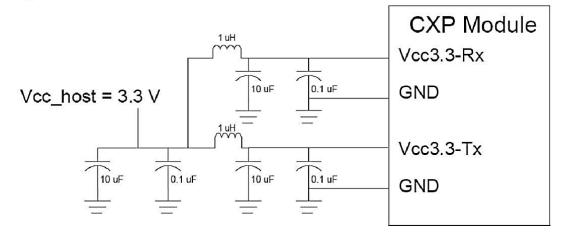


Figure 3. Host Board Power Supply Filtering

Timing for Soft Control and Status Functions

Parameter	Symbol	Max	Unit	Conditions
Initialization Time	t_init	2000	ms	Time from power on ¹ , hot plug or rising edge of Reset until the module is fully functional ²
Serial Bus Hardware Ready Time	t_serial	2000	ms	Time from power on until module responds to data transmission over the 2-wire serial bus
Monitor Data Ready Time	t_data	2000	ms	Time from power on ¹ to data not ready, bit 0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until the module is fully functional ²
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until Vout:IntL = Vol
IntL Deassert Time	toff_IntL	500	μs	Time from clear on read ³ operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Interrupt Pulse Max Width	tintL,PW-max	50	μs	Max Time from falling edge of int_L pin output to rising edge of int_L pin output
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
Tx Fault Assert Time	ton_Txfault	200	ms	Time from Tx Fault state to Tx Fault bit set and IntL asserted
Flag Assert Time	ton_flag	200	ms	Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set ⁴ until associated IntL assertion is inhibited
Mask Deassert Time	toff_mask	100	ms	Time from mask bit cleared ⁴ until associated IntlL operation resumes
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set ⁴ until module power consumption enters lower Power Level

Power_over-ride or Power-set Deassert Time	toff_Pdown	300	ms	Time from P_Down bit cleared ⁴ until the module is fully functional3
Interrupt Pulse Min Width	tintL,PW-min	5	μs	Min Time from falling edge of int_L pin output to rising edge of int_L pin output
Reset Pulse Min Width	Trst,PW-min	25	ms	Min Time from falling edge of Reset pin input to rising edge of Reset pin input

Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.
- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 deasserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

Mechanical Dimensions

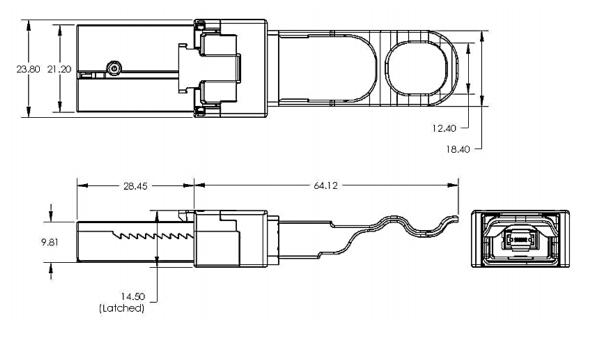


Figure 5. Mechanical Specifications

References

- 1. 120Gbit/s Small Form-factor Hot-Pluggable CXP-interface
- 2. Unretimed CPPI electrical interface
- Supplement to Infiniband Architecture Specification, Volume 2, Release 1.2.1., Annex A6: "120 Gb/s 12x Small Form-factor Pluggable (CXP) – Interface Specification for Cables, Active Cables, & Transceivers", September 2009

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to sales@sourcelight.com.cn