## 100Gbps QSFP28 PSM4 2Km

SLOS28-100G-PSM4



#### **Overview**

SLQS28-100G-PSM4 is a parallel 100Gb/s Quad Small Form-factor Pluggable (QSFP28) optical module. It provides increased port density and total system cost savings. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 25Gb/s operation for an aggregate data rate of 100Gb/s on 2km of single mode fiber.

An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP28 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

The module operates with single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power

Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module can be managed through the I2C two-wire serial interface.

#### **Features**

- ♦ 4 independent full-duplex channels
- ♦ Up to 28Gb/s data rate per channel
- ♦ QSFP28 MSA compliant
- ◆ Compliant to IEEE 802.3bm 100GBASE PSM4
- ♦ Up to 2km reach for G.652 SMF
- ♦ Maximum power consumption 3.5W
- ♦ Single +3.3V power supply
- ♦ Operating case temperature: 0 to 70°C
- ♦ RoHS-6 compliant

### **Applications**

- ♦ 100G Ethernet Links
- ♦ Infiniband QDR and DDR interconnects
- ◆ Datacenter and Enterprise networking

### **Ordering Information**

| Part Number      | Product Description      |
|------------------|--------------------------|
| SLQS28-100G-PSM4 | 100G QSFP28 PSM4 2Km SMF |

# **Module Block Diagram**

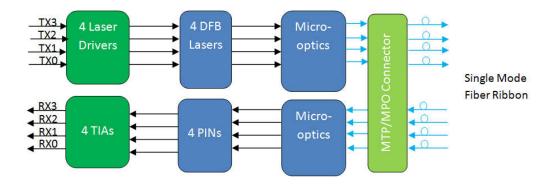



Figure 1. Module Block Diagram

# **Absolute Maximum Ratings**

It has to be noted that operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

| Parameter                          | Symbol   | Min  | Max | Unit |
|------------------------------------|----------|------|-----|------|
| Supply Voltage                     | $V_{CC}$ | -0.5 | 3.6 | V    |
| Storage Temperature                | Tst      | -40  | 85  | ōС   |
| Case Operating Temperature         | Тор      | 0    | 70  | ōC   |
| Relative Humidity (non-condensing) | Rh       | 0    | 85  | %    |
| Damage Threshold, each Lane        | $TH_d$   | 4.5  |     | dBm  |

# **Recommended Operating Conditions and Power Supply Requirements**

| Parameter                  | Symbol   | Min   | Typical  | Max   | Unit |
|----------------------------|----------|-------|----------|-------|------|
| Supply Voltage             | $V_{CC}$ | 3.135 | 3.3      | 3.465 | V    |
| Operating Case temperature | Тор      | 0     |          | 70    | ōС   |
| Data Rate Per Lane         | fd       |       | 25.78125 |       | Gbps |
| Control Input Voltage High |          | 2     |          | Vcc   | V    |
| Control Input Voltage Low  |          | 0     |          | 0.8   | V    |
| Link Distance with G.652   | D        | 0.002 |          | 2     | km   |

# **Electrical Specifications**

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

| Parameter                                   | Symbol | Min | Typical | Max  | Unit | Notes |
|---------------------------------------------|--------|-----|---------|------|------|-------|
| Power Consumption                           |        |     |         | 3.5  | W    |       |
| Supply Current                              | Icc    |     |         | 1.1  | А    |       |
| Transceiver Power-on<br>Initialization Time |        |     |         | 2000 | ms   | 1     |



|                                                  | Transmitter (Each Lane) |                |         |     |      |                                     |  |  |  |
|--------------------------------------------------|-------------------------|----------------|---------|-----|------|-------------------------------------|--|--|--|
| Single-ended Input Voltage<br>Tolerance (Note 2) |                         | -0.3           |         | 4.0 | V    | Referred to<br>TP1 signal<br>common |  |  |  |
| AC Common Mode Input<br>Voltage Tolerance        |                         | 15             |         |     | mV   | RMS                                 |  |  |  |
| Differential Input Voltage<br>Swing Threshold    |                         | 50             |         |     | mVpp | LOSA<br>Threshold                   |  |  |  |
| Differential Input Voltage Swing                 | Vin, pp                 | 190            |         | 700 | mVpp |                                     |  |  |  |
| Differential Input Impedance                     | Zin                     | 90             | 100     | 110 | ohm  |                                     |  |  |  |
|                                                  |                         | Receiver (Each | n Lane) |     |      |                                     |  |  |  |
| Single-ended Output Voltage                      |                         | -0.3           |         | 4.0 | V    | Referred to signal common           |  |  |  |
| AC Common Mode Output Voltage                    |                         |                |         | 7.5 | mV   | RMS                                 |  |  |  |
| Differential Output Voltage Swing                | Vout, pp                | 300            |         | 850 | mVpp |                                     |  |  |  |
| Differential Output Impedance                    | Zout                    | 90             | 100     | 110 | ohm  |                                     |  |  |  |

#### Notes:

- 1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.
- 2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

# **Optical Characteristics**

| Parameter                                                                           | Symbol           | Min  | Typical | Max  | Unit  | Notes |  |
|-------------------------------------------------------------------------------------|------------------|------|---------|------|-------|-------|--|
| Transmitter                                                                         |                  |      |         |      |       |       |  |
| Center Wavelength                                                                   | λc               | 1295 | 1310    | 1325 | nm    |       |  |
| Side Mode Suppression Ratio                                                         | SMSR             | 30   |         |      | dB    |       |  |
| Total Average Launch Power                                                          | P <sub>T</sub>   |      |         | 8.0  | dBm   |       |  |
| Average Launch Power,<br>each Lane                                                  | $P_{AVG}$        | -5.5 |         | 2.0  | dBm   |       |  |
| Optical Modulation Amplitude<br>OMA, each Lane                                      | P <sub>OMA</sub> | -3.5 |         | 2.2  | dBm   | 1     |  |
| Difference in Launch Power between any Two Lanes (OMA)                              | Ptx,diff         |      |         | 5    | dB    |       |  |
| Launch Power in OMA minus<br>Transmitter and Dispersion Penalty<br>(TDP), each Lane |                  | -4.3 |         |      | dBm   |       |  |
| TDP, each Lane                                                                      | TDP              |      |         | 2.9  | dB    |       |  |
| Extinction Ratio                                                                    | ER               | 3.5  |         |      | dB    |       |  |
| Relative Intensity Noise                                                            | RIN              |      |         | -128 | dB/Hz |       |  |
| Optical Return Loss Tolerance                                                       | TOL              |      |         | 20   | dB    |       |  |



| Transmitter Reflectance                                       | $R_{T}$          |           |                     | -12   | dB  |   |
|---------------------------------------------------------------|------------------|-----------|---------------------|-------|-----|---|
| Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}      | .,,              | {0.31, 0. | .4, 0.45, 0.34, 0.3 |       | 2.0 | 2 |
| Average Launch Power OFF<br>Transmitter, each Lane            | P <sub>OFF</sub> |           |                     | -30   | dBm |   |
|                                                               |                  | Receive   | r                   |       |     |   |
| Center Wavelength                                             | λc               | 1295      | 1310                | 1325  | nm  |   |
| Damage Threshold, each Lane                                   | THd              | 4.5       |                     |       | dBm | 3 |
| Average Receive Power, each Lane                              |                  | -10.2     |                     | 2.0   | dBm |   |
| Receive Power (OMA), each Lane                                |                  |           |                     | 2.2   | dBm |   |
| Receiver Sensitivity (OMA), each<br>Lane                      | SEN1             |           |                     | -9.0  | dBm |   |
| Receiver Sensitivity (OMA), each<br>Lane                      | SEN2             |           |                     | -12.0 | dBm |   |
| Difference in Receive Power between any Two Lanes (OMA)       | Prx,diff         |           |                     | 5.5   | dB  |   |
| LOS Assert                                                    | LOS <sub>A</sub> |           | -20                 |       | dBm |   |
| LOS De-Assert                                                 | LOS <sub>D</sub> |           | -18                 |       | dBm |   |
| LOS Hysteresis                                                | LOS <sub>H</sub> | 0.5       |                     |       | dB  |   |
| Receiver Electrical 3 dB upper<br>Cutoff Frequency, each Lane | F <sub>C</sub>   |           |                     | 31    | GHz |   |

### Notes:

- 1. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 2 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured at receiver input for BER =  $1 \times 10^{-12}$
- 5. Measured at receiver input for BER =  $5x10^{-5}$

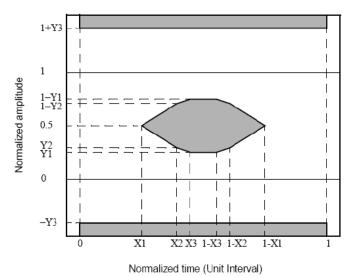



Figure 2. Eye Mask Definition

# **Pin Assignment**

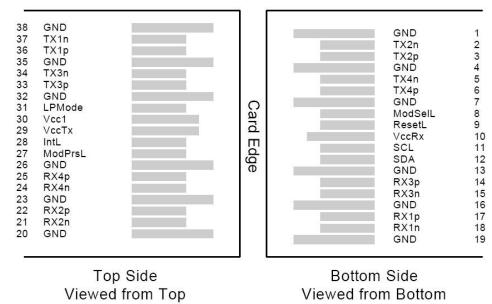



Figure 3. Electrical Pin-out Details

# **Pin Descriptions**

| Pin | Logic      | Symbol  | Name/Description                     | Notes |
|-----|------------|---------|--------------------------------------|-------|
| 1   |            | GND     | Ground                               | 1     |
| 2   | CML-I      | Tx2n    | Transmitter Inverted Data Input      |       |
| 3   | CML-I      | Tx2p    | Transmitter Non-Inverted Data output |       |
| 4   |            | GND     | Ground                               | 1     |
| 5   | CML-I      | Tx4n    | Transmitter Inverted Data Input      |       |
| 6   | CML-I      | Tx4p    | Transmitter Non-Inverted Data output |       |
| 7   |            | GND     | Ground                               | 1     |
| 8   | LVTLL-I    | ModSelL | Module Select                        |       |
| 9   | LVTLL-I    | ResetL  | Module Reset                         |       |
| 10  |            | VccRx   | +3.3V Power Supply Receiver          | 2     |
| 11  | LVCMOS-I/O | SCL     | 2-Wire Serial Interface Clock        |       |
| 12  | LVCMOS-I/O | SDA     | 2-Wire Serial Interface Data         |       |
| 13  |            | GND     | Ground                               |       |
| 14  | CML-O      | Rx3p    | Receiver Non-Inverted Data Output    |       |
| 15  | CML-O      | Rx3n    | Receiver Inverted Data Output        |       |
| 16  |            | GND     | Ground                               | 1     |
| 17  | CML-O      | Rx1p    | Receiver Non-Inverted Data Output    |       |
| 18  | CML-O      | Rx1n    | Receiver Inverted Data Output        |       |



|    | Datasheet | -       |                                     |   |
|----|-----------|---------|-------------------------------------|---|
|    |           |         |                                     |   |
| 19 |           | GND     | Ground                              | 1 |
| 20 |           | GND     | Ground                              | 1 |
| 21 | CML-O     | Rx2n    | Receiver Inverted Data Output       |   |
| 22 | CML-O     | Rx2p    | Receiver Non-Inverted Data Output   |   |
| 23 |           | GND     | Ground                              | 1 |
| 24 | CML-O     | Rx4n    | Receiver Inverted Data Output       | 1 |
| 25 | CML-O     | Rx4p    | Receiver Non-Inverted Data Output   |   |
| 26 |           | GND     | Ground                              | 1 |
| 27 | LVTTL-O   | ModPrsL | Module Present                      |   |
| 28 | LVTTL-O   | IntL    | Interrupt                           |   |
| 29 |           | VccTx   | +3.3 V Power Supply transmitter     | 2 |
| 30 |           | Vcc1    | +3.3 V Power Supply                 | 2 |
| 31 | LVTTL-I   | LPMode  | Low Power Mode                      |   |
| 32 |           | GND     | Ground                              | 1 |
| 33 | CML-I     | Тх3р    | Transmitter Non-Inverted Data Input |   |
| 34 | CML-I     | Tx3n    | Transmitter Inverted Data Output    |   |
| 35 |           | GND     | Ground                              | 1 |
| 36 | CML-I     | Tx1p    | Transmitter Non-Inverted Data Input |   |
| 37 | CML-I     | Tx1n    | Transmitter Inverted Data Output    |   |
| 38 |           | GND     | Ground                              | 1 |

### Notes:

- 1. GND is the symbol for signal and supply power) common for the QSFP28 module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of 1000mA.

# **Recommended Power Supply Filter**

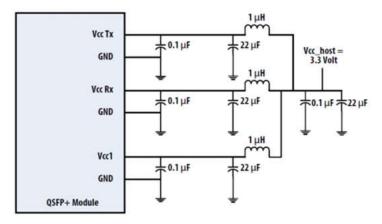
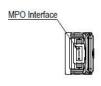



Figure 4. Recommended Power Supply Filter

# **Digital Diagnostic Functions**


The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified.

| Parameter                               | Symbol       | Min  | Max | Unit | Notes |
|-----------------------------------------|--------------|------|-----|------|-------|
| Temperature monitor absolute error      | DMI_Temp     | -3   | 3   | ōС   | 1     |
| Supply voltage monitor absolute error   | DMI_VCC      | -0.1 | 0.1 | V    | 2     |
| Channel RX power monitor absolute error | DMI_RX_Ch    | -2   | 2   | dB   | 3     |
| Channel Bias current monitor            | DMI_Ibias_Ch | -10% | 10% | mA   | 4     |
| Channel TX power monitor absolute error | DMI_TX_Ch    | -2   | 2   | dB   | 3     |

#### Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

### **Mechanical Dimensions**



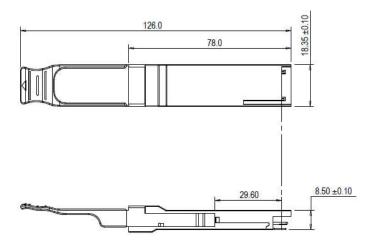



Figure 5. Mechanical Specifications

Attention: To minimize MPO connection induced reflections, an MPO receptacle with 8-degree angled end-face is utilized for this product. A female MPO connector with 8-degree end-face should be used with this product as illustrated in Figure 6.

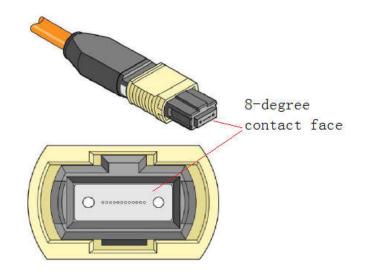



Figure 6. Female MPO Connector with 8-degree End-face

### **ESD**

This transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

### **Laser Safety**

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

### Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to sales@sourcelight.com.cn