Sourcelight

SFP+ 16G 850nm 100m SW

SLSS-1685-SR

Overview

SLSS-1685-SR SFP+ transceivers, according to 16 Gigabit Small Form Factor Pluggable "SFP+" Multi-Sourcing Agreement (MSA) SFF-8431 Rev. 4.1 and SFF-8472 Rev. 11.0, are designed for use in Fibre Channel links up to 14.025Gb/s data rate over multimode fiber.

They are compatible with FC-PI-5 Rev. 6.00, SFF-8081 and SFF-8432. SLSS-1685-SR offer commercial operating temperature option.

Features

- Up to 14.025Gb/s bi-directional data links
- Electrical interface specifications per SFF-8431
- Management interface specifications per SFF-8432 and SFF-8472
- Build-in Dual CDR at 14.025Gb/s and bypass at 4.25Gb/s and 8.5Gb/s
- SFP+ MSA package with duplex LC connector
- Uncooled 850nm VCSEL Laser
- 35m on 50/125um MMF
- 100m on high-bandwidth 50/125um(OM3) MMF
- ◆ Single +3.3V power supply
- Class 1 laser safety certified
- Metal enclosure, for lower EMI
- Operating case temperature: 0 to 70 °C
- RoHS Compliant

Applications

• Tri Rate 4.25 / 8.5 / 14.025 Gb/s Fibre Channel Rate

Ordering Information

Part Number	Product Description
SLSS-1685-SR	SFP+ 16Gbps SW , 850nm, 100m, 0ºC ~ +70ºC

Sourcelight

Absolute maximum rating

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameters	Symbol	Min.	Max.	Unit
Power Supply Voltage	V _{cc}	-0.5	4.0	V
Storage Temperature	Тс	-40	+85	°C
Relative Humidity	RH	5	95	%

Recommended Operating Condition

Parameter	Symbol	Min.	Typical	Max	Unit
Power Supply Voltage	V _{CC}	3.135	3.300	3.465	V
Operating Case Temperature	Tc	0	25	70	°C
Data Rate	-	-	4.25/8.5/14.025		Gb/s

Transceiver Electrical Characteristics

	Symbol	Minimum	Typical	Maximum	Unit	Notes	
Module Supply Current		lcc	-		300	mA	-
Power Dissipation		PD	-	-	1000	mW	-
		Trar	nsmitter				
Input Differential I	mpedance	ZIN	-	100	-	Ω	-
Differential Data Ir	nput Swing	VIN, P-P	180	-	700	mV _{P-P}	-
	Transmitter Fault	V _{OH}	2.0	-	Vcc	V	TX_FAULT
TX_FAULT	Normal Operation	V _{OL}	0	-	0.8	V	
	Transmitter Disable	V _{IH}	2.0	-	Vcc	V	TX_DISABLE
TX_DISABLE	Transmitter Enable	V _{IL}	0	-	0.8	V	
		Re	ceiver				
Output Differentia	l Impedance	Zo	-	100	-	Ω	-
Differential Data Output Swing		Vout, p-p	300	-	850	mV_{P-P}	1
Data Output Rise Time, Fall Time		tr, tf	-	30	-	ps	2
RX_LOS	Loss of signal (LOS)	V _{OH}	2.0	-	Vcc	V	RX_LOS
	Normal Operation	V _{OL}	0	-	0.8	V	3

Notes:

1. Internally AC coupled, but requires an external 100 $\!\Omega$ differential load termination.

2. 20 – 80 %.

3. LOS is an open collector output. Should be pulled up with $4.7k\Omega$ on the host board.

Sourcelight

Transmitter Optical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Launch Optical Power	Ро	-6	-2.5	-1.2	dBm	1
Center Wavelength Range	λc	840	850	860	nm	-
Optical Modulation Amplitude @ 4.25 Gb/s	OMA	247	-	-	uW	
Optical Modulation Amplitude @ 8.5 Gb/s	OMA	302	-	-	uW	
Optical Modulation Amplitude @ 14.025 Gb/s	OMA	331	-	-	uW	
Optical Rise/Fall Time @ 4.25 Gb/s	tr/tf			90	ps	2
Transmitter Waveform and Dispersion Penalty @ 8.5 Gb/s	TWDP	-	-	4.3	dB	3
Spectral Width (RMS) @14.025Gb/s	Δλ	-	-	0.59	nm	-
Optical Return Loss Tolerance	ORLT	-	-	12	dB	-
Pout @TX-Disable Asserted	Poff	-	-	-30	dBm	1
Launch Optical Power	Ро	-6	-2.5	-1.2	dBm	1

Notes:

1. $50/125\mu$ m fiber with NA = 0.2, $62.5/125\mu$ m fiber with NA = 0.275.

2. Unfiltered, 20-80%. Complies with FC 1x and 2x eye mask when filtered.

3. TWDP is calculated with a 1,0 equalizer and a 9.84 GHz Gaussian filter for the fiber simulation. Jitter values at γT and γR are controlled by TWDP and stress receiver sensitivity.

Receiver Optical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Center Wavelength	λς	840	-	860	nm	-
Receiver OMA Sensitivity = 4.25 Gb/s	RxSENS	-	-	-12.1	dBm	1
Receiver OMA Sensitivity = 8.5 Gb/s	RxSENS	-	-	-11.2	dBm	1
Receiver OMA Sensitivity = 14.025 Gb/s	RxSENS	-	-	-10.5	dBm	2
Receiver Overload (P _{avg})	P _{OL}	0	-	-	dBm	
Optical Return Loss	ORL	12	-	-	dB	-
LOS De-Assert	LOS _D	-	-	-13	dBm	-
LOS Assert	LOS _A	-30	-	-	dBm	-
LOS Hysteresis	-	0.5	-	-	dB	-

Notes:

1. Measured with PRBS 2⁷-1 at 10⁻¹² BER, Unstress sensitivity.

2. Measured with PRBS 2³¹-1 at 10⁻¹² BER, Unstress sensitivity.

General Specifications

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Data Rate	BR		4.25 8.5 14.025		Gb/s	1
Bit Error Rate	BER			10-12		2
Fiber Length on 50/125µm MMF	L	-	-	150 50 35	m	3 4 5
Fiber Length on 50/125µm high-bandwidth (OM3) MMF	L	-	-	380 150 100	m	3 4 5

Notes:

1. 4x and 8x Fibre Channel compatible, per FC-PI-4.

2. PRBS 2⁷-1 for 4GFC and 8GFC. PRBS 2³¹-1 for 16GFC.

3. At 4.25 Gb/s Fibre Channel data rate.

4. At 8.5 Gb/s Fibre Channel data rate.

5. At 14.025 Gb/s Fibre Channel data rate.

Pin Definition

Pin	Symbol	Name/Description	Note
1	VEET	Transmitter Ground	1
2	TX_Fault	Transmitter Fault (LVTTL-O) - High indicates a fault condition	2
3	TX_Disable	Transmitter Disable (LVTTL-I) – High or open disables the transmitter	3
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O) (MOD-DEF2)	4
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O) (MOD-DEF1)	4
6	MOD_ABS	Module Absent (Output), connected to VeeT or VeeR in the module	5
7	RSO	Rate Select 0 – Not used, Presents high input impedance	6
8	RX_LOS	Receiver Loss of Signal (LVTTL-O)	2
9	RS1	Rate Select 1 – Not used, Presents high input impedance	6
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Inverse Received Data out (CML-O), AC Coupled	-
13	RD+	Received Data out (CML-O), AC Coupled	-
14	VeeR	Receiver Ground	-
15	VccR	Receiver Power - +3.3V	-
16	VccT	Transmitter Power - +3.3 V	-
17	VEET	Transmitter Ground	1
18	TD+	Transmitter Data In (CML-I), AC Coupled	-
19	TD-	Inverse Transmitter Data In (CML-I), AC Coupled	-
20	VEET	Transmitter Ground	1

Sourcelight

Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost.
- 3. This input is internally biased high with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT.
- 4. Two-Wire Serial interface clock and data lines require an external pull-up resistor dependent on the capacitance load.
- 5. This is a ground return that on the host board requires a 4.7KΩ to 10KΩ pull-up resistor to VccHost.
- 6. Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 11.0, Rx Rate Select is set at Bit 3, Byte 110, Address A2h. Tx Rate Select is set at Bit 3, Byte 118, Address A2h.

Note: writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.

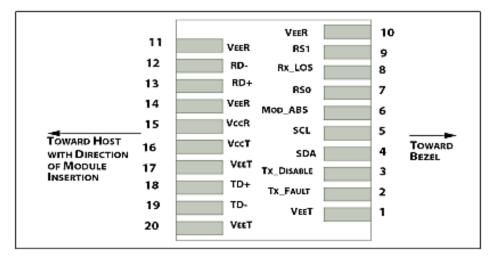


Figure 1: Interface to Host PCB

Recommended Host Board Power Supply Filter Network

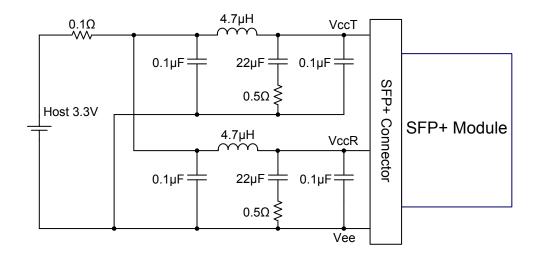


Figure2. Recommended Host Board Power Supply Filter Network

www.sourcelight.com.cn

Sourcelight

Recommended Application Interface Block Diagram

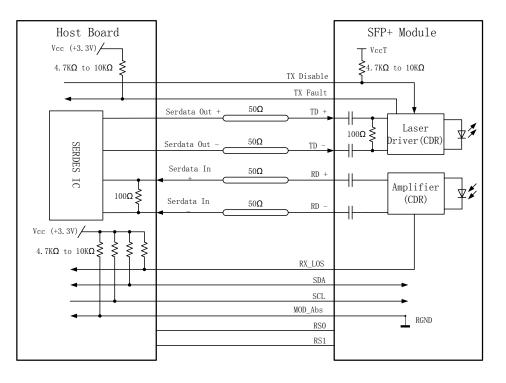


Figure3. Recommended Application Interface Block Diagram

Mechanical Specifications

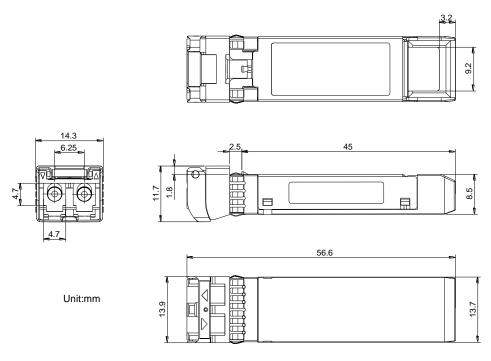


Figure4. Mechanical Specifications

www.sourcelight.com.cn

Sourcelight

PCB layout recommendation

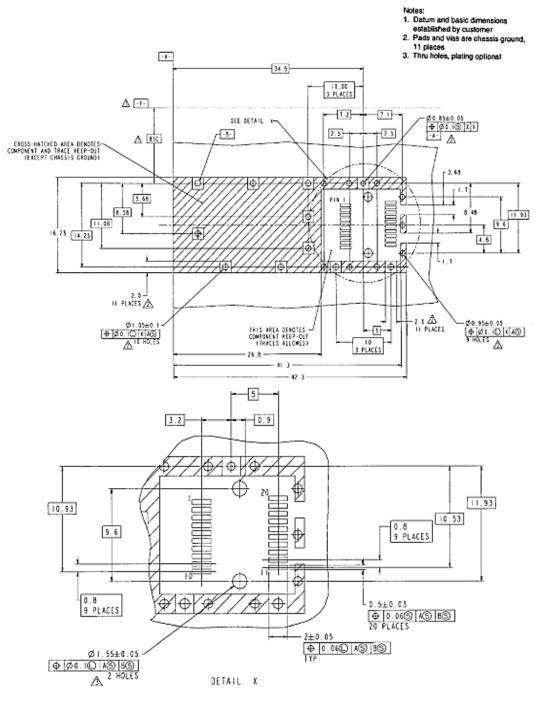


Figure 5. PCB layout recommendation

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to <u>sales@sourcelight.com.cn</u>